Принцип возрастания энтропии
Страница 1

Энтропия (греч. en в, внутрь + trope поворот, превращение) – одна из величин, характеризующих тепловое состояние тела или системы тел; мера внутренней неупорядоченности системы; при всех процессах, происходящих в замкнутой системе, энтропия или возрастает (необратимые процессы), или остается постоянной (обратимые процессы). Все подробности заказать минивэн на нашем сайте. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

Часто второе начало термодинамики преподносится как объединенный принцип существования и возрастания энтропии.

Второй закон термодинамики можно сформулировать следующим образом: невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более теплым (постулат Клаузиуса, 1850 г.). Непрерывное преобразование теплоты в работу осуществляется только в круговом процессе или цикле.

Каждый элементарный процесс, входящий в цикл, осуществляется при подводе или отводе теплоты dQ, сопровождается совершением или затратой работы, увеличением или уменьшением внутренней энергии, но всегда при выполнении условия dQ=dU+dL и dq=du+dl, которое показывает, что без подвода теплоты (dq=0) внешняя работа может совершаться только за счет внутренней энергии системы, и, подвод теплоты к термодинамической системе определяется термодинамическим процессом. Интегрирование по замкнутому контуру: Здесь QЦ и LЦ – соответственно теплота, превращенная в цикле в работу, и работа, совершенная рабочим телом, представляющая собой разность |L1| – |L2| положительных и отрицательных работ элементарных процессов цикла.

Элементарное количество теплоты можно рассматривать как подводимое (dQ>0) и отводимое (dQ<0) от рабочего тела. Сумма подведенной теплоты в цикле |Q1|, а сумма отведенной теплоты |Q2|. Следовательно, LЦ=QЦ=|Q1| – |Q2|.

Подвод количества теплоты Q1 к рабочему телу возможен при наличии внешнего источника с температурой выше температуры рабочего тела. Такой источник теплоты называется горячим. Отвод количества теплоты Q2 от рабочего тела также возможен при наличии внешнего источника теплоты, но с температурой более низкой, чем температура рабочего тела. Такой источник теплоты называется холодным. Таким образом, для совершения цикла необходимо иметь два источника теплоты: один с высокой температурой, другой с низкой. При этом не все затраченное количество теплоты Q1 может быть превращено в работу, так как количество теплоты Q2 передается холодному источнику.

Условия работы теплового двигателя сводятся к следующим:

– необходимость двух источников теплоты (горячего и холодного);

– циклическая работа двигателя;

– передача части количества теплоты, полученной от горячего источника, холодному без превращения ее в работу.

В связи с этим второму закону термодинамики можно дать еще несколько формулировок:

- передача теплоты от холодного источника к горячему невозможна без затраты работы;

- невозможно построить периодически действующую машину, совершающую работу и соответственно охлаждающую тепловой резервуар;

- природа стремится к переходу от менее вероятных состояний к более вероятным.

Следует подчеркнуть, что второй закон термодинамики (так же как и первый), сформулирован на основе опыта. В наиболее общем виде второй закон термодинамики может быть сформулирован следующим образом: любой реальный самопроизвольный процесс является необратимым.

В. Томсон (лорд Кельвин) предложил в 1851 г. следующую формулировку: невозможно при помощи неодушевленного материального агента получить от какой-либо массы вещества механическую работу посредством охлаждения ее ниже температуры самого холодного из окружающих предметов.

Впервые понятие энтропии было введено немецким физиком Рудольфом Клаузиусом в середине прошлого века. Он и Вильям Томсон (Кельвин) открыли второе начало термодинамики и сделали из него неожиданные выводы. Это начало устанавливает наличие в природе фундаментальной асимметрии, то есть однонаправленности всех происходящих в ней самопроизвольных процессов. Об этой асимметрии свидетельствует все окружающее нас: горячие тела с течением времени охлаждаются, однако холодные сами по себе отнюдь не становятся горячими; прыгающий мяч в конце концов останавливается, однако покоящийся мяч самопроизвольно не начнет подскакивать. Здесь проявляется то свойство природы, которое Кельвин и Клаузиус смогли отделить от свойства сохранения энергии. Оно состоит в том, что, хотя полное количество энергии должно сохраняться в любом процессе, распределение имеющейся энергии изменяется необратимым образом. Второе начало термодинамики указывает естественное направление, в котором происходит изменение распределения энергии, причем это направление совершенно не зависит от ее общего количества. При всех превращениях различные виды энергии в конечном счете переходят в тепло, которое, будучи предоставлено себе, рассеивается в мировом пространстве. Так как такой процесс рассеяния тепла необратим, то рано или поздно все звезды погаснут, все активные процессы в Природе прекратятся, и наступит состояние, которое Клаузиус назвал «тепловой смертью» Вселенной.

Страницы: 1 2

Статьи и публикации:

Функциональная характеристика прерывных соединений костей
Прерывные соединения костей называют еще синовиальными соединениями, полостными соединениями или суставами. Сустав имеет свои специфические конструкцию, расположение в организ­ме и выполняет определенные функции. В каждом суставе различа ...

Специфические для низкой температуры и генных богатых глицином белков
Специфическая для низко температуры кДНК пшеницы pTACR7, представляет ген, определенный как tacr7 из озимой пшеницы. Термин низкотемпературно-специфический используется авторами, поскольку экспрессия гена tacr7 не вызывается обработкой эк ...

Фагоциты
Фагоцитоз представляет собой важную особенность клеточного звена врождённого иммунитета, которую осуществляют клетки, называемые фагоцитами, которые "заглатывают" чужеродные микроорганизмы или частицы. Фагоциты обычно циркулирую ...

Разделы