Биомембрана – это не просто некая пассивная структура, ограничивающая водные компартменты. Уже краткое знакомство с типами ферментов, связанных с мембранами, показывает, насколько разнообразны ассоциированные с мембранами каталитические активности.
1. Трансмембранные ферменты, катализирующие сопряжённые реакции на противоположных сторонах мембраны. Характерными примерами могут служить окислительно-восстановительные ферменты, например фотосинтетические реакционные центры растений и бактерий или цитохром с-оксидаза митохондрий. Расположенные на противоположных сторонах мембраны активные центры этих ферментов сопряжены друг с другом с помощью потока электронов, генерирующего трансмембранный электрический потенциал. К этому классу ферментов могут быть отнесены также многие рецепторы. Связывание лиганда (например, гормона) с доменом, локализованным с наружной стороны клеточной мембраны, приводит к изменениям в цитоплазматическом домене фермента, которые, в свою очередь, инициируют клеточный ответ. В этом случае через мембрану переносится информация, а не заряды или какие-либо растворенные молекулы. Показано, что некоторые рецепторы являются тирозиновыми протеинкиназами (см. разд. 9.7) и, следовательно, представляют собой мембранные ферменты, обладающие каталитической активностью. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
2. Трансмембранные ферменты, участвующие в транспорте веществ. Многие мембранные белки участвуют в транспорте молекул через бислой. Активный транспорт может быть сопряжен с гидролизом ATP, как в случае Ca-ATPазы саркоплазматического ретикулума. Движущей силой активного транспорта могут быть также ионные градиенты.
3. Белки, являющиеся компонентами электронтранспортных цепей. Наиболее типичные ферменты этого класса — компоненты дыхательной цепи митохондрий, заканчивающейся цитохром с оксидазой; ферменты системы электронного транспорта микросом, включающие цитохром Р450 и цитохром b5; элементы фотосинтетической электронтранспортной цепи в тилакоидах. Локализация компонентов электронтранспортных цепей в мембране приводит к увеличению их локальной концентрации, что позволяет значительно ускорить перенос электронов между молекулами.
4. Ферменты, способные использовать мембраносвязанные субстраты. В этот класс могут входить ферменты, участвующие в метаболизме компонентов мембраны: фосфолипидов, гликолипидов, олиизопреноидных соединений и стероидов, а также ферменты, частвующие в процессинге мембранных и секреторных белков. В большинстве случаев эти ферменты являются интегральными мембранными белками, но иногда (примером могут служить фосфолипазы) представляют собой растворимые белки, лишь временно связанные с мембраной. Примерами белков этого типа являются лидерная пептидаза из Е.соli и фосфолипаза С, связанные с мембраной посредством гликозилфосфатидилинозитольного якоря.
5. Ферменты, использующие водорастворимые субстраты. Многие мембраносвязанные ферменты используют растворимые субстраты. В некоторых случаях фермент локализуется в такой области мембраны, где велика концентрация субстрата. Например, ацетилхолинэстераза, катализирующая гидролиз ацетилхолина, по-видимому, фиксируется в постсинаптической мембране с помощью ковалентной сшивки с фосфатидилинозитольным гликолипидом. Целый ряд ферментов, участвующих в гидролизе крахмала и белков, прикрепляется к мембранам микроворсинок кишечника с помощью гидрофобных доменов, расположенных в N-концевой части полипептидов.
6. Ферменты, образующие мембраносвязанный комплекс для облегчения канализации субстрата. Мембраны могут служить своеобразным организующим каркасом, с которым связываются периферические ферменты с образованием мультиферментного комплекса. Имеются косвенные данные о том, что участвующие в реакциях цикла Кребса ферменты матрикса митохондрий связываются с мембраной таким образом, что продукт одного фермента становится субстратом другого, не выходя за пределы мультиферментного комплекса.
7. Ферменты, которые совершают челночные перемещения между цитозолем и мембраной и активность которых модулируется связыванием с мембраной. Эта группа мембранных ферментов обнаружена недавно. Они способны связываться либо прямо с поверхностью фосфолипидного бислоя, либо со специфическими белковыми рецепторами. Чаще всего эти ферменты активируются при связывании с мембраной, но иногда наблюдается и их инактивация. Типичными примерами ферментов, активирующихся при связывании, являются пируватоксидаза из Е. соli, протеинкиназа С и некоторые ферменты, участвующие в каскаде свертывания крови.
Статьи и публикации:
Инфузории. Класс
инфузории
- наиболее высокоорганизованные простейшие. Органоидами движения служат реснички, по строению сходные со жгутиками, но более короткие и многочисленные. Тело покрыто прочной эластичной оболочкой, придающей ей постоянную форму. У большинств ...
Классическая классификация боли
Боль можно классифицировать следующим образом:
1. Ноцигеная.
2. Нейрогенная.
3. Психогенная.
Ноцигеная боль. Когда при раздражении кожных ноцицепторов, ноцицепторов глубоких тканей или внутренних органов тела, возникающие импульсы, сл ...
Выделение мембран
В течение последних трех десятилетий становилось все более очевидно, что огромное большинство клеточных функций осуществляется при непосредственном участии мембран.
И растительные, и животные клетки разделены на отсеки, причем многие цит ...