Если теперь внешняя сила будет периодична по времени, то в результате наша частица будет "скакать" из одной ямы в другую и обратно. Итак, что мы получили: наша бистабильная система откликается на сильное внешнее воздействие. При этом частота, с которой система перескакивает из одного устойчивого состояния в другое, совпадает с частотой внешнего воздействия. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
Пока здесь нет ничего удивительного. Если внешнее воздействие очень сильное, то система будет послушно повторять все изменения и колебания этой силы.
Посмотрим, что будет, если внешнее воздействие окажется не столь сильным, т.е. F < F0. Тогда частица не сможет покинуть яму и так и останется в ней, несмотря на внешнее воздействие. В результате мы получили, что наша система обладает неким порогом чувствительности: при внешней силе F > F0 система начинает перескакивать из одного состояния в другое с частотой внешней силы, а при F < F0 система не чувствует внешнее воздействие вовсе. (В принципе можно возразить, что в этом случае частица будет колебаться под действием внешней силы внутри одной ямы. Однако чаще всего, наблюдая реальную бистабильную систему, мы можем сказать только одно - в каком из двух состояний она находится. В этом случае, при F < F0 мы будем просто видеть, что система "застыла" в одном из своих положений и все. Именно такой случай мы имеем в виду)
Итак, вывод: у бистабильной системы существует некий порог чувствительности к внешним воздействиям. Слишком слабые, т.е. подпороговые воздействия остаются для системы незамеченными.
Возникает вопрос: неужели никак нельзя заставить систему чувствовать подпороговый сигнал? Оказывается, можно! И возможность эту предоставляет именно стохастический резонанс.
Итак, рассмотрим вновь бистабильную систему в отсутствии внешних сил. Система замерла в одном из положений равновесия. Пусть теперь на частицу действует случайная сила, то есть давайте наложим на систему случайное внешнее воздействие, попросту говоря, шум. Под действием этой силы частица будет случайно колебаться. При этом может оказаться и так, что частица, блуждая по одной потенциальной яме, вдруг перескочит и во вторую. Среднее время между такими перескоками равно:
t = exp (DV / D).
Здесь DV - высота барьера, разделяющего две потенциальные ямы, а D - интенсивность шума. Видно, что чем сильнее шум, тем меньше это время, т.е. тем чаще частица перескакивает из одной ямы в другую. Если изобразить зависимость координаты частицы от времени, то получится приблизительно такая картина, как на рис. 3.
Статьи и публикации:
Сергей Сергеевич Четвериков
Сергей Сергеевич Четвериков (24 апреля (6 мая) 1880, Москва — 2 июля 1959, Горький) — выдающийся русский биолог, генетик-эволюционист, сделавший первые шаги в направлении синтеза менделевской генетики и эволюционной теории Ч. Дарвина. Он ...
Состав и свойства слюны. Регуляция слюноотделения
Слюна представляет собой вязкую, бесцветную жидкость. Она на 95-99% состоит из воды и на 1-1,5% - из органических и неорганических веществ. К органическим веществам относятся: белок муцин, некоторое количество глобулинов аминокислот, моче ...
Сахарный тростник
Сгущенный сок сахарного тростника - сакару - в Индии пили еще 5 тыс. лет назад. В IV в. до н.э. один из полководцев Александра Македонского писал: " В Индии есть тростник, который без пчел дает мед". А в начале нашей эры путешес ...